Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
نویسندگان
چکیده
Mitochondria are considered autonomous organelles, physically separated from endocytic and biosynthetic pathways. However, recent work uncovered a PINK1/parkin-dependent vesicle transport pathway wherein oxidized or damaged mitochondrial content are selectively delivered to the late endosome/lysosome for degradation, providing evidence that mitochondria are indeed integrated within the endomembrane system. Given that mitochondria have not been shown to use canonical soluble NSF attachment protein receptor (SNARE) machinery for fusion, the mechanism by which mitochondrial-derived vesicles (MDVs) are targeted to the endosomal compartment has remained unclear. In this study, we identify syntaxin-17 as a core mitochondrial SNARE required for the delivery of stress-induced PINK1/parkin-dependent MDVs to the late endosome/lysosome. Syntaxin-17 remains associated with mature MDVs and forms a ternary SNARE complex with SNAP29 and VAMP7 to mediate MDV-endolysosome fusion in a manner dependent on the homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Syntaxin-17 can be traced to the last eukaryotic common ancestor, hinting that the removal of damaged mitochondrial content may represent one of the earliest vesicle transport routes in the cell.
منابع مشابه
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.
Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). Parkin and PINK1, two genes associated with familial PD, have been implicated in the degradation of depolarized mitochondria via autophagy (mitophagy). Here, we describe the involvement of parkin and PINK1 in a vesicular pathway regulating mitochondrial quality control. This pathway is distinct from canonical mito...
متن کاملPINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy
Parkinson's disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism - an initial step triggering sequential events in mitophagy...
متن کاملNew Perception of Mitochondrial Regulatory Pathway in Parkinsonism – Ubiquitin, PINK1, and Parkin
Mutations in PARK2, a gene encoding cytosolic E3 ubiquitin ligase parkin cause autosomal recessive Parkinsonism similar to mutations in the less prevalent PINK1 (PTEN induced putative kinase 1). Parkin and PINK 1 (Ser/Thr kinase) eliminate damaged mitochondria through mitophagy and mutations cause accumulation of impaired mitochondria and reactive oxygen species (1). PINK1, when activated by de...
متن کاملPINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding
Genetic studies indicate that the mitochondrial kinase PINK1 and the RING-between-RING E3 ubiquitin ligase Parkin function in the same pathway. In concurrence, mechanistic studies show that PINK1 can recruit Parkin from the cytosol to the mitochondria, increase the ubiquitination activity of Parkin, and induce Parkin-mediated mitophagy. Here, we used a cell-free assay to recapitulate PINK1-depe...
متن کاملThe Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway
Loss-of-function mutations in the PINK1 or parkin genes result in recessive heritable forms of parkinsonism. Genetic studies of Drosophila orthologs of PINK1 and parkin indicate that PINK1, a mitochondrially targeted serine/threonine kinase, acts upstream of Parkin, a cytosolic ubiquitin-protein ligase, to promote mitochondrial fragmentation, although the molecular mechanisms by which the PINK1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 214 شماره
صفحات -
تاریخ انتشار 2016